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Abstract

We propose a regret-based model that allows the separation of atti-

tudes towards transitivity on triples of random variables that are close

apart. This enables a theoretical reinterpretation of evidence related

to intransitive behavior in the laboratory. When viewed through this

paper’s analysis, the experimental evidence need not imply intransi-

tive behavior for large risky decisions such as investment choices and

insurance.
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precedes C then A precedes C seems almost obvious. Yet we know that not



put enough zeroes on the ends of the payoffs ..., you will observe subjective

expected utility behavior.” In our view, this argument is especially relevant

for violations of transitivity because such violations may be due to insufficient

consideration by decision makers. That is, cycles may be observed with

respect to small gambles, but as decision makers will pay more attention and

exert more effort when making big financial decisions, cycles are less likely to

happen. If this is the case, then unlike violations of the independence axiom

and its alternatives, where experiments may reveal insight into real-world

decision making, observing violations of transitivity in experiments does not

necessarily indicate such behavior in the large. Our aim is to provide a formal





intransitivity in one part of the domain implies intransitivity everywhere. A

more general regret model, which permits a decoupling of attitudes towards

transitivity in the small and transitivity in the large, is considered in Sec-

tion 3. All proofs are in Appendix A while Appendix B contains several

examples.

2 Linear Regret

Consider a set L of finite-valued random variables X of the form X =

(x1, s1; . . . ; xn, sn) where the outcomes are monetary payoffs (which may be

positive or negative).4 The events s1, . . . , sn partition the sure event and the

probability of si is



variables X = (x1, s1; . . . ; xn, sn) and Y = (y1, s1; . . . ; yn, sn) over the same

set of events,

X � Y if and only if
∑

i

Pr[si]ψ(xi, yi) > 0 (1)

where ψ is a regret function which is continuous and for all x and y,

(i) ψ(x, y) = −ψ(y, x),

(ii) ψ is increasing in its first and decreasing in its second argument.

The function ψ represents the feelings of the decision maker when 
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non-expected utility choice.6 For clarity, we refer to preferences as defined

in eqs. (1) or (2) as universal regret, as later we define local regret.

Assume linear regret. If for some x1, x2, x3 and s1, s2, s3 such that Pr[s1] =

Pr[s2] = Pr[s3] = 1
3
, (x1, s1; x2, s2; x3, s3) ∼ (x3, s1; x1, s2



The proof of Theorem 1(i) makes specific predictions that can be checked

experimentally. A violation of transitivity implies a cycle as in eq. (3). Then

for every y there is a sufficiently small ε > 0 such that for s0, . . . , s3 where

Pr[s0] = 1 − ε and Pr[s1] = Pr[s2] = Pr[s3] = ε
3
,

(y, s0; x1, s1; x2, s2; x3, s3) ≻ (y, s0; x3, s1; x1, s2; x2, s3) ≻

(y, s0; x2, s1; x3, s2; x1, s3) ≻ (y, s0; x1, s1; x2, s2; x3, s3)

Theorem 1 strongly depends on the assumption that regret is linear in

probabilities, but it does not hold for non-linear models of regret. Example 1

in Appendix B provides a regret relation that is transitive in the large, yet

violates transitivity in the small. Once regret is not linear in probabilities,

the opposite is also possible. Example 2 in Appendix B presents a non-linear

model of regret which is expected utility (and therefore transitive) in every

small neighborhood, yet has intransitive cycles in the large.

Although non-linear regret permits a separation between attitudes to-

wards transitivity in the small and in the large, it nevertheless imposes some

strict restrictions over preferences in small neighborhoods. We analyze such

preferences in the next section.

3 Local preferences and regret

To facilitate a distinction between intransitive cycles where random variables

are far away from each other and cycles where random variables are all in

small neighborhoods, define preferences to be locally regret-based if they can

be represented as in eq. (2) above in a neighborhood around each random

variable W , albeit possibly with different functions ψ and V . Formally, a

binary relation is locally regret-based if for every W there is ε > 0 such that

for all X, Y ∈ B(W, ε),

X � Y if and only if VW (ΨW (X, Y )) > 0
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As we show below, local regret does not imply universal regret, yet it does

impose restrictions on ψW and VW across different values of W (Theorem 2).

First, all the local-regret functions ψW can be taken to be the same. Second,

any two local-regret functionals VW , VW ′ with domains RW ,RW ′ are



Proposition 1 If preferences are locally regret-based, then X1 ∼ Y 1 if and

only if X2 ∼ Y 2, where Xj , Y j are defined above.

This proposition is related to Savage’s sure-thing principle. The difference

is that in Proposition 1 the common parts of Xj and Y j are “large” while

these is no such restriction in the sure-thing principle.

If each local-regret functional is linear in probabilities, then we have a

stronger result than Theorem 2.

Proposition 2 If preferences are locally regret-based and each local-regret

functional VW is linear in probabilities, then local regrets are identically lin-

early evaluated. That is, each local regret is the expected value of a common

(up to positive multiplication) local-regret function ψ for all W .

In the proof of Theorem 2(i), the ordinal equivalence of the ψW func-

tions is obtained by adjusting the regret functionals. The adjusted regret

functional will in general be non-linear, even if the initial regret functional is

linear. Thus, Proposition 2 does not follow from Theorem 2(i).

Remark 1 If preferences are locally regret-based then Theorem 2 implies

that either there are intransitive cycles in every neighborhood or there is no

intransitive cycle in any neighborhood. Intransitivity in some but not all

neighborhoods are possible when preferences do not satisfy local regret.

Remark 2 Our distinction between preferences in the small and in the large

should not be confused with Machina’s [17] model of Fréchet differentiable

representations, where preferences violate the independence axiom while con-

verging at each point to expected utility. Intransitive regret models of the

type discussed in this paper do not permit a representation function (which

necessarily implies transitivity), hence are orthogonal to Machina’s analysis.
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4 Discussion

Example 1 in Appendix B shows that violations of transitivity when random

variables are close to each other do not imply the existence of intransitive

cycles when random variables are far apart from each other. As experiments

are done with “small” random variables, it is questionable to what extent

one may deduce from these experiments that individuals violate transitiv-

ity in “big” decisions like financial investments, real-estate transactions, or

retirement planning.

But isn’t this true for all experimental results? For example, when real

payments are involved, experiments regarding the Allais paradox (Allais [1];

see also MacCrimmon and Larsson [16], Kahneman and Tversky [12], and

Starmer [22]) are conducted, for obvious reasons, with small amounts of

money. Will an argument similar to the one made in the paper lead to

the conclusion that we cannot learn from these experiments that the Allais

paradox really exists?

There is however an important difference between experiments on tran-



yet such preferences persist even after such modifications (see for example





ψ(x1, x3) + ψ(x2, x1) + ψ(x3, x2)

3
> 0

Let W = (w1, t1; . . . ;wℓ, tℓ) ∈ L. For any m > 1
ε
, let s1, . . . , s3m be pair-

wise disjoint with the probabilities 1
3m



for any regret level r and integer ℓ ≥ 2. The first equality is true as

(r, 1
ℓ
;−r, 1

ℓ
; 0



> Vi

(

ψi(x, y),
1

ℓ
;−ψi(x, y),

1

ℓ
; 0,

ℓ− 2

ℓ

)

= 0

where we use the fact that ψ is skew symmetric, −ψi(x, y) < −ψi(x
′, y′), the

monotonicity of V (·



Let RW be the set of regret lotteries generated by X, Y ∈ B(W, ε) and

RW ′ be the set of regret lotteries generated by X ′, Y ′ ∈ B(W ′, ε). The set

RW ∩RW ′ is non-empty as (0, 1) belongs to it. As RW and RW ′ are open sets

so is RW ∩RW ′ . Therefore, we may take R ∈ RW ∩RW ′ such that R 6= (0, 1).

Thus, there exist X, Y ∈ B(W, ε), X 6= Y and X ′, Y ′ ∈ B(W ′, ε), X ′ 6= Y ′

such that R = Ψ(X, Y ) = Ψ(X ′, Y ′). Without loss of generality we may write

X,X ′,W , and W ′ on the same list of events s1, . . . , sn. We can partition

each si into two sub-events, si,α and si,



then R is locally generated in the neighborhood of each random variable on

the line segment joining W and W ′.

Suppose that VW and VW ′ are not concordant. In particular, VW (R) > 0

and VW ′



Proof of Proposition 1: We first prove that if X1 ∼ Y 1, then ψW 1(x1, y1) =

−ψW 1(x2, y2).

By the skew-symmetry of the functions ψ,

X1 ∼ Y 1 ⇐⇒ VW 1(ψW 1(x1, y1), δ; ψW 1(x2, y2), δ; 0, 1 − 2δ) = 0

⇐⇒ VW 1(−ψW 1(y1, x1), δ; −ψW 1(y2, x2), δ; 0, 1 − 2δ) = 0

Therefore, ψW 1(x1, y1) > −ψW 1(y2, x2) iff ψW 1(x2, y2) 6 −ψW 1(y1, x1). How-

ever, ψW 1(x1, y1) > −ψW 1(x2, y2) implies

−ψW 1(x1, y1) = ψW 1(y1, x1) < −ψW 1(y2, x2) = ψW 1(x2, y2) =⇒

VW 1(ψW 1(y1, x1), δ; ψW 1(y2, x2), δ; 0, 1 − 2δ) <

VW 1(ψW 1(x1, y1), δ; ψW 1(x2, y2), δ; 0, 1 − 2δ) = 0

A contradiction to X1 ∼ Y 1.

By Theorem 2(i), ψW 2 is an increasing ordinal transformation of ψW 1 .

Therefore, ψW 1(x1, y1) = −ψW 1(x2, y2) implies that ψW 2(x1, y1) = −ψW 2(x2, y2)

and thus X2 ∼ Y 2. �

Proof of Proposition 2: Let W = (w1, s1;w2, s2; . . . ;wn, sn). Let ψW be a

local-regret function at W . First, we show that the linearity of VW implies

that each ψW is unique up to positive multiples.

For two regret levels r1, r2 > 0, let x, y > 0 be monetary outcomes such

that r1 = ψW (x,−x) and r2 = ψW (y,−y). Define

X = (x, s1,ε1 ;−y, s1,ε2 ;w1, s1,1−ε1−ε2 ;w2, s2; . . . ;wn, sn)

Y = (−x, s1,ε1 ; y, s1,ε2 ;w1, s1,1−ε1−ε2 ;w2, s2; . . . ;wn, sn)

where ε1, ε2 > 0, ε1 + ε2 < 1, ε2/ε1 = r1/r2, and Pr[s1,εℓ
] = εℓ, ℓ = 1, 2.

Choose ε1, ε2



= r1ε1 − r2ε2

= 0

Hence, X ∼ Y .

Let ψ̂W



that ψj+1 is a positive multiple of ψj. Consequently, ψW ′ is a positive multiple

of ψW . �

Appendix B: Examples

Example 1 Intransitive in the small, transitive in the large

Let ψ(x, y) = x − y be a regret function. For X = (x1, s1; . . . ; xn, sn),

Y = (y1, s1; . . . ; yn, sn), Pr[si] = pi define

V (Ψ(X, Y )) =



















∑n

i=1 piψ(xi, yi) if ||Ψ(X, Y )|| ≥ ε

α



such that

V
(

cR1 + (1 − c)R2

)

6= cV (R1) + (1 − c)V (R2)

Take two regret lotteries, R1, R2, with ||R1|| > ε and ||R2|| < ε. Let c be

sufficiently close to 1 so that ||cR1 + (1 − c)R2|| > ε. Then

V
(

cR1 + (1 − c)R2

)

= cE[R1] + (1 − c)E[R2]

6= cV (R1) + (1 − c)V (R2)

as E[R1] = V (R1) but E[R2] 6= V (R2).

Example 2 Transitive in the small, intransitive in the large

Let X, Y , and ψ(x, y) be as in Example 1. Define

V (Ψ(X, Y )) =











































∑n

i=1 piψ(xi, yi) if ||Ψ(X, Y )|| < ε

(1−β
XY

)
∑n

i=1 piψ(xi, yi)+

β
XY





[2] Bell, D., 1982. “Regret in decision making,” Operations Research 30:961–

981.



[13] Lichtenstein, S. and Slovic, P., 1971. “Reversal of Preference Between

Bids and Choices in Gambling Decisions,” Journal of Experimental Psy-

chology 89:46–55.

[14] Loomes, G. and R. Sugden, 1992. “Regret theory: An alternative theory

of rational choice under uncertainty,” Economic Journal 92:805–824.

[15] Loomes, G., Starmer, C., and Sugden, R., 1991. “Observing Violations

of Transitivity by Experimental Methods,” Econometrica 59:425–439.

[16] MacCrimmon, K.R., and S. Larsson, 1979. “Utility Theory: Axioms

Versus ‘Paradoxes’,” in M. Allais and O. Hagen, Eds.: Expected Utility

Hypotheses and the Allais Paradox. Dordrecht: D. Reidel.

[17] Machina, M.J., 1982. “ ‘Expected utility’ analysis without the indepen-

dence axiom,” Econometrica 50:277–323.

[18] Machina, M.J., 1987. “Choice under uncertainty: Problems solved and

unsolved,” Journal of Economic Perspectives 1:121–154.

[19] Mueller, D.C., 2003. Public Choice III . Cambridge University Press.

[20] Nishimura, H., 2018. “The transitive core: inference of welfare from

nontransitive preference relations,” Theoretical Economics 13:579–606.

[21] Regenwetter, M., J. Dana, and C.P. Davis-Stober, 2011. “Transitivity

of preferences,” Psychological Review 118:42-56.

[22] Starmer, C., 2000. “Developments in non-expected util


